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An Adaptive Hull-to-Emitter Correlator

Carey Priebe
David Marchette

Command and Control Department
Code 421

Naval Ocean Systems Center
San Diego, Ca. 92152

INTRODUCTION

One of the functions of a data fusion system involves identifying the platforms reported in
Electronic Intelligence fElim-)data. These reports contain a set of parameters measured from
the platform's radar. The assignment of a name to this radar report is called Hull-to-Emitter
Correlation (hultec).

In [4?the authors ,dlescribed an Adaptive Network System (ANS) (popularly refered to a§
"neural network") approach to this problem. The particular paradigm used waS a

backpropagation network. This system classifies the data into linearly separable classes,
using a gradient descent, least mean squared error algorithm to determine the separating
hyperplanes. The network returns a value for each hull that gives a measure of its distance
from a point in the teaching set (actually it's a measure of the distance from the separating
hyperplane). This approach compared favorably to traditional statistical techniques. One
problem with this approach is that the output of the network, though it ranges continuously
from zero to one, has no relationship to probability. Although the network gives a ranking for
the hulls it has learned, the value associated with any one hull gives little information. It is
only the value relative to the other hulls that can be used in further decision making.

This paper deals with a modification of a statistical technique that retains the distributed
nature of the ANS, while allowing the network to learn to approximate the probability
distribution of the data. This not only allows the network the potential of better performance,
but it allows other systems to use the output of the network in a probablistic sense. /

THE HULTEC PROBLEM

For the purposes of this paper, a report is a set of parameters measured from a radar
signal: PRI (pulse repetition interval), Scan (scan rate), RF (frequency), etc. The hultec
problem is to determine the emitter of origin for the report, based on these measured
parameter-. By its nature, this is a difficult problem. Errors in measurement are bound to
occur, so the system requires a measure of fault tolerance. Some sensors report different
parameters than others, requiring the system to be able to handle missing data. The parameter
spaces of several emitters may overlap, so the system must respond with a ranked list of -
emitters, rather than a single emitter.

The main problem with the backpropagation approach investigated in [4] is that it attempts
to assign a single hull to the report. Often, as mentioned above, the distributions of the hulls
are not disjoint. It is therefor not always possible or desirable to assign a report to a single
hull. Instead, one would like to provide a list of the possible hulls with some measure of the
liklihood of classification associated with each hull. One way to do this is to model the
probability density function associated with each hull. In other words, the reports define a
sample space for each of the classes (hulls), and the reports associated with each class define a
probability distribution for that class over the sample space.
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An improvement over the ANS approach described in [4] is one which can learn the
probability density functions for the classes. This is the approach taken by the network
described below. The output from the net is the value of the probability density functions for
all the hulls evaluated on the report. The value output for a given hull, in contrast to that given
by the backpropagation scheme, has a meaning in an absolute sense as well as relative to the
values output by other hulls. The network can indicate how certain it is that a given input
stimulus belongs to a given class, thereby indicating, for example, that the second place
choice for classification is very high indeed and should not be disregarded. This gives more
information than a winner-take-all approach, and this information could be used in
conjunction with other information (such as a priori information, data from other sensors,
etc.) to improve overall performance.

Another important advantage that a probability density estimator gives over a
winner-take-all classifier is the ability to detect unknown emitters. When the output is low for
all the emitters known by the system, it is likely (though not certain) that the report comes
from an emitter that is unknown to the system. The ability to recognize new emitters can be as
important as the correct classification of known emitters, and a system that can continue to
cluster reports from this new emitter is of great value to a data fusion system.

KERNEL ESTIMATORS

The problem of probability density estimation has been attacked by many different
methods. One of the more successful is the technique of kernel estimation [5]. Consider a
one dimensional problem, with a single class. The goal is to aproximate the probability
density function for the teaching data, which consists of a collection of points drawn from an
unknown distribution. In its simplest form, the kernel estimator involves assigning to each of
the teaching points a gaussian distribution, the kernel, with mean equal to the input point and a
fixed variance, called the window width. This produces, as a partitioning of the input space,
a Voronoi diagram [1], the optimal nearest neighbor partitioning. These gaussians are
summed, weighted by the window width and the number of teaching points. Therefor, the
kernel estimator with kernel K is defined by

I x -Xi

f(x) = ---- ZK( (1)
nh h

where h is the window width. Distributions other than the normal may be used for the kernel
K, but for the purposes of this paper, the kernel will always be a normal distribution.

The ANS architecture proposed, an implementation of the kernel estimator, assigns a node
in the hidden layer for each gaussian (see Figure 1). The node is connected to the input layer,
with the weights set to the mean of the gaussian. These connections do a subtraction, rather
than the traditional multiplication of their signal, and this signal is then summed by the node
and the kernel is applied. In the case of a single dimensional input the node retains a
variance, while in the multidimensional case, the node may retain a covariance matrix, or it
may keep a single variance.
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FIGURE 1

Representation of Gaussians

The gaussians are presented with the n-dimensional input from the input layer having n
nodes and independently compute their respective activation values (gaussian distances) from
this input. The activation value for these gaussian nodes in the hidden layer can be obtained
via the following formula:

~~exp ( -0.5[(x - U~t . x - 3

Gj(x) = ----------------------------------------- (2)

(27t)(d/2) * 1(1/2)

Here Gj(&) is the activation value of the jth gaussian node Gj when presented with vector

input A. Z is the covariance matrix for gaussian node Gj, while 11 is the vector-valued mean
for this gaussian. d is the dimensionality of this particular gaussian and is equated with the
dimensionality of the input layer, i.e. the number of parameters in the report. Since the

components of the mean I, are represented as a node's input weights, these weights can be
* .thought of as shifting the origin for the node. A gaussian function is then applied to the inputs

of the node.

If the matrix I is diagonal, then (2) is just the product of d independant gaussians, one for
each input. This observation gives a method for coping with missing data: "drop" the
appropriate gaussian from the product. In (2) this corresponds to assigning the missing input
the value at the mean for that component. The system will continue to work as if the data
were there. This approach gives an overly optimistic output for the report, but the ranking
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FIGURE 2

Combination of Gaussians

FIGURE 3

Sum of Gaussians
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The outputs from the hidden layer are summed, weighted by the number of points in the
node, to produce a final answer (see figure 2). There is one node on the output layer per
class. If there is more than one class stored within the network, the nodes on the final layer
are connected only to the nodes corresponding to their class. This method of combining
gaussians to produce an overall distribution provides the system with enormous flexibility.
Although the initial kernels being used are predetermined to be gaussians, many widely
varying distributions can be approximated by a sum of gaussians (see Figure 3). The overall
distribution for a particular class is not, therefor, assumed to be normal. In this manner the
network can be used as a classifier, giving output that is meaningful in a probabilistic sense.

One difficulty with the kernel estimator is the choice of window width. A width that is too
wide will produce a unimodal approximation, while a narrow choice can produce a
multimodal distribution with inherent spikes. The width can be chosen experimentally, or one
of the many adaptive kernel estimation algorithms may be employed (see [5]). A modification
of the kernel estimator which allows the window to adapt to the data is described below.

MOVING MEAN AND VARIANCE

The kernel estimator described above is static once the initial learning is finished. One
way to modify this scheme to produce a dynamic system is to allow the nodes to vary their
means and covariance matrix as the data is recieved.

Only those nodes whose activation values reach some threshold defined by that node's
activation function (usually the value of the gaussian at a fixed multiple of one standard
deviation from the mean) are considered to be a likely category for the current input and are
updated. This updating consists of moving the mean and variance of the gaussian based on
the current input and some measure of the total number of inputs to the gaussian thus far. For
the updating of the mean, we have

gj+l) = (J) + [1/(j+l)][I(j+l) - (J)] (3)

where g(J) is the (one-dimensional) mean after the jth input and I(j+1) is the j+I s t input to be
categorized in this gaussian. The updating of the covariance is similar. Here

Sxy(i+l) = Sxy(J) + 0/i+l)] * Axy(i+l) (4)

with

Axy(i+l) = (x(j+l) - tx()) * (y(j+l) - gy()) (5)

Then

I

zxy(o+l) =.. Sxy(j+l) (6)

where we are calculating Zxyj+1), the x,y component of the covariance matrix Z after the
j+1st input clustered in this Gaussian. x(j) and y(j) are the x and y component of the input

vector after the jth input, and gx, gt are components of the mean. These formulas require
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the node to store j, the number of points in the node. This value provides the weight used in
the sum of nodes computed for the final layer: j divided by the total number of points in the
class. In this manner, the nodes corresponding to clusters near the mean of the distribution
are weighted higher than nodes corresponding to outliers.

This approach can also be made to choose the number of nodes in the hidden layer. When
a point comes in, the hidden nodes all evaluate their response to the input. If none of the
nodes fire above a threshold, it is assumed that none of the existing nodes properly
categorizes the input and a new node is created. Otherwise, all nodes of the appropriate class
that fired above a threshold are allowed to adjust their parameters.

One of the advantages of this system is that it is dynamic. If the distribution of the data is
drifting with time, the network's distribution will also drift.

The kernel method, and the moving parameters method, can be modified to allow the
network to continue in an unsupervised manner. This allows the system to continue to learn,
even though truth data may not be available. This is important in many Navy applications, as
truth data is often hard to come by, and a system that clusters like entities may be the best that
one can hope for.

The idea behind the unsupervised learning rule is that if the system has no a priori
knowledge pertaining to the class of the input, it should update each class proportionaly to the
likelihood that the input comes from that class. This is indicated in equations 7-10. Equations
7 and 8 are the usual update rule for the mean (note that this is written in a less efficient but
conceptually simpler form than equation 3):

j*Aold + x

Atnew = ---------------- (7)
j+l

j =j + 1 (8)
Here j is the number of points, and x is the input. In the case of an unknown input, the value

of the distribution is used to weight the amount of change:

j*told + f(x)*x

.tnew - (9)
j + f(x)

j = j + f(x) (10)

A similar rule is used for the variance. The variable j is now a floating point number rather
than an integer, but the two approaches are very similar in their implementations. This is
essentially the Bayesian approach described in [7].

The unsupervised learning rule allows the system to continue to learn when truth data is
unavailable, producing clusters of "like" reports. A typical use of this rule would be to first
teach the system on known inputs using the supervised learning rule, then allow the system to
monitor data, modifying its distributions using the unsupervised learning rule.

RESULTS

The kernel estimator was compared against CARl (Computer Assisted Radar
Identification) [3], a classification program based on standard statistical techniques, on a data
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set consisting of 4019 points taken from 63 hulls. The parameters reported are PRI and Scan.
The two systems were cross-validated using this data set: each system is taught on 4018
reports and tested on the missing report. If the hull with the largest value on the output
corresponds to the hull from the missing report, the system is said to be correct. If the second
highest output corresponds to the correct hull, the system gets a second place, and if the third
highest is correct the system gets a third place. This is repeated until the system has been
tested on all the reports in the data set.

The results are tabulated below. Note that the kernel estimator is slightly better on this
data set. Preliminary indications are that the adaptive mean and covariance approach can in
some cases improve on the kernel estimator, but in general it requires more points to construct
its estimate.

Method Co ct Second ird
CARI 79% 16% 3%
Kernel 82% 12% 3%

These implementations were run on a PC AT compatible computer. It should be noted
that the backpropagation algorithm described in [4] could not be cross-validated on this data
set, even using a Cray, due to the prohibitive processing requirements of the learning
algorithm. Although this is irrelevant for the finished system (after teaching), it is an
important consideration for a system intended to be dynamic, and hence continually learning.

CONCLUSIONS

The classification scheme described herein developes a statistical model of the input
entering the system. In addition, any a priori knowledge about the distribution of the
incoming data can be incorporated into the system. This yields a powerful, dynamic
classification tool possessing the advantages inherent in network methodologies and yet is
readily understood via statistical analysis. The system can operate in both a supervised and
unsupervised mode, and can handle missing as well as noisy data.

The gaussian nodes which are integral to the system are independent of one another. This
allows each node to independently perform its processing based on its inputs and its activation
function. In keeping with traditional neural network schemes, this yields an easily
parallelizable system. Each node can be thought of as an individual, independent, primitive
processor. The nodes in various layers of the net are then linked through weighted
connections to nodes in the previous layer. Thus the processing time in a hardware
implementation is independent of the number of nodes required to estimate the density, and it
is independent of the number of hulls in the system.

Another aspect of the system's dynamic nature is the adaptive network size. Within
hardware constraints, gaussian nodes can be allocated dynamically, as dictated by the statistics
of the incoming data. Under certain learning conditions, many gaussian nodes may be
necessary to capture the salient features of the data. At other times, the actual distributions
being modeled may resemble unimodal gaussian functions, thereby requiring very few
gaussian nodes.

It may be useful to consider a more mature system in which information entering the
system at different times from multiple reports can be used to strengthen the classification
process. A temporal classification system employing the gaussian scheme described herein
has been developed [6]. While one report may not give enough information for a
classification, a track of several reports may give more information. Another application of
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this approach would be to look at the signal itself rather than measured parameters of the

signal, and classify it based on the temporal nature of the signal.
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